八年级物理下册竞赛题有何难点?
校园之窗 2026年1月3日 13:43:07 99ANYc3cd6
八年级物理下册竞赛模拟卷
考试时间: 90分钟 满分: 100分
选择题(每题3分,共24分)

-
如图所示,水平桌面上有甲、乙两个相同的容器,分别装有质量相等的不同液体,将两个完全相同的小球分别放入容器中,静止时两球状态如图所示,下列说法正确的是( ) A. 甲容器中液体对容器底部的压强较大 B. 乙容器中液体对容器底部的压力较大 C. 甲容器中小球受到的浮力较大 D. 乙容器中容器对桌面的压强较大
-
小明用如图所示的装置“探究杠杆的平衡条件”,在杠杆两端挂上不同数量的钩码,移动钩码的位置,使杠杆在水平位置平衡,如果在杠杆两侧的钩码下方,再各挂一个相同的钩码,则( ) A. 杠杆仍保持平衡 B. 杠杆左端下沉 C. 杠杆右端下沉 D. 无法判断
-
一个空心球,其空心部分体积占总体积的1/3,将此球放入水中,静止时有1/4的体积露出水面,若将空心部分注满水,再放回水中,则( ) A. 球将下沉 B. 球将悬浮 C. 球仍漂浮,但露出水面的体积小于1/4 D. 球仍漂浮,但露出水面的体积大于1/4
-
如图所示,甲、乙两容器完全相同,分别装有质量相等的水和酒精(ρ_水 > ρ_酒精),下列说法不正确的是( ) A. 甲容器对桌面的压力较大 B. 乙容器底部受到的液体压强较大 C. 甲容器底部受到的液体压力较大 D. 两容器底部受到的液体压力相等
(图片来源网络,侵删) -
如图所示,在水平地面上放置着A、B两个物体,它们的质量关系为m_A > m_B,在A、B上分别施加一个水平向右的拉力F_A和F_B,使它们一起向右做匀速直线运动,且F_A > F_B,则下列关于A、B之间和B、地面之间摩擦力的说法正确的是( ) A. A、B之间的摩擦力等于F_A B. A、B之间的摩擦力等于F_B C. B、地面之间的摩擦力等于F_A + F_B D. B、地面之间的摩擦力等于F_A - F_B
-
将密度为ρ_物、重为G_物的一个实心物体,放入密度为ρ_液(ρ_液 > ρ_物)的液体中,物体最终静止时,下列说法不正确的是( ) A. 物体受到的浮力 F_浮 = G_物 B. 物体排开液体的重 G_排 = G_物 C. 物体排开液体的体积 V_排 = G_物 / (ρ_液g) D. 液体对物体产生的压强与物体的重力成正比
-
用如图所示的滑轮组,将重为G的物体匀速提升了h的高度,若不计绳重和摩擦,动滑轮重为G_动,则人对绳子自由端拉力F所做的功为( ) A. Gh B. (G+G_动)h C. 2(G+G_动)h D. (G+G_动)h / 2
-
如图所示,三个完全相同的容器中,分别装有质量相等的水、酒精和水银(ρ_水银 > �_水 > �_酒精),若容器底部受到的液体压强相等,则三个容器中液面的高度h_甲、h_乙、h_丙的关系是( ) A. h_甲 > h_乙 > h_丙 B. h_甲 < h_乙 < h_丙 C. h_甲 = h_乙 = h_丙 D. 无法比较
(图片来源网络,侵删)
填空题(每空2分,共24分)
-
一个标准大气压能支持约 __ 米高的水柱。(g取10N/kg,ρ_水=1.0×10³ kg/m³)
-
如图所示,轻质杠杆OA可绕O点转动,在A点挂一重为40N的物体,杠杆在拉力F的作用下保持静止,图中杠杆自重不计,O为杠杆支点,l₁=0.3m,l₂=0.1m,则拉力F的大小为 __ N。
-
一艘轮船从长江驶入大海,它所受的浮力 __(选填“变大”、“变小”或“不变”),轮船船身会 __(选填“上浮一些”或“下沉一些”)。
-
将一重为8N的物体,用10N的水平压力压在竖直的墙壁上,物体静止不动,此时物体受到的摩擦力大小为 __ N,方向 __。
-
一个重为5N的实心铁球,完全浸没在水中,受到的浮力是 __ N。(ρ_铁=7.9×10³ kg/m³,g取10N/kg)
-
如图所示的液压机,大小活塞的面积比为S₁:S₂=10:1,若在小活塞上施加10N的压力,则在大活塞上能产生的举力是 __ N。
-
如图所示,用100N的水平拉力F,使物体A在10s内沿水平地面向前匀速移动了5m,若物体A受到的摩擦力为30N,则拉力F做的功是 __ J,功率是 __ W。
作图与实验探究题(共20分)
-
(4分)如图所示,杠杆OA在力F₁和F₂的作用下处于静止状态,O是支点,请在图中画出力F₁和F₂的力臂L₁和L₂。
-
(6分)小明在“探究影响浮力大小因素”的实验时,做了如图所示的实验。 (1)比较图①和②,可知物体在液体中受到的浮力与 __ 有关。 (2)比较图②和③,可知物体在液体中受到的浮力与 __ 无关。 (3)为了探究浮力与液体密度的关系,应选用图 __ 和 __ 进行比较。 (4)由实验可知,物体浸没在水中时受到的浮力为 __ N。
-
(10分)在“探究杠杆平衡条件”的实验中: (1)实验前,发现杠杆左端低右端高,应将杠杆两端的螺母向 __(选填“左”或“右”)端调节,使杠杆在水平位置平衡。 (2)杠杆平衡后,小明在杠杆左侧距支点3格处挂了2个钩码,如图所示,为使杠杆在水平位置重新平衡,应在杠杆右侧距支点 __ 格处挂 __ 个钩码。 (3)小红同学在实验中,在杠杆左侧用弹簧测力计竖直向上拉,使杠杆在水平位置平衡,如图所示,若弹簧测力计的示数为2N,则每个钩码重 __ N。
计算题(共32分)
-
(10分)如图所示,一个底面积为100cm²、高为20cm的薄壁圆柱形容器,放在水平桌面上,容器中装有10cm深的水。(ρ_水=1.0×10³ kg/m³,g取10N/kg) (1)求水对容器底部的压强和压力。 (2)求容器对桌面的压力和压强。(容器质量忽略不计)
-
(12分)如图所示,用滑轮组提升重物,物体重G=600N,滑轮重G_动=30N,绳重和摩擦不计,在拉力F的作用下,物体在10s内被匀速提升了2m。 (1)求拉力F的大小。 (2)求拉力F做的功和功率。 (3)若此滑轮组的机械效率为η,请写出η的表达式(用题目中给出的物理量符号表示),并计算其大小。
-
(10分)一个体积为0.5dm³的实心小球,将其放入盛有水的溢水杯中,小球静止时,溢出水200g,求: (1)小球受到的浮力。 (2)小球的密度。 (3)若将该小球放入某种液体中,小球静止时有一半体积浸在液体中,求该液体的密度。
参考答案与解析
选择题
-
B,解析:甲、乙容器质量相等,小球质量相等,所以容器对桌面压力相等,受力面积相等,压强相等,A、D错,小球在甲中漂浮,浮力等于重力;在乙中悬浮,浮力也等于重力,所以浮力相等,C错,乙中液体密度大于甲中液体密度(因为小球在乙中下沉),根据p=ρgh,h_乙 < h_甲,所以乙中液体对底部压强p_乙 < p_甲,压力F=pS,p_乙 < p_甲,S相等,所以F_乙 < F_甲。(注:原题选项B有误,应为乙容器中液体对容器底部的压力较小,此处按题目给出的选项进行判断,但指明题目可能存在瑕疵。)
- 更正与说明: 经重新审视,原题选项B应为“乙容器中液体对容器底部的压力较小”,如果按此更正,则无正确选项,若按原题B选项“较大”,则无正确答案,为符合竞赛题的严谨性,我们假设题目描述正确,并重新分析:
- 重新分析: 小球在甲漂浮,ρ_甲液 < ρ_球;小球在乙悬浮,ρ_乙液 = ρ_球。ρ_乙液 > ρ_甲液,两容器底面积S相同,液体深度 h_甲 > h_乙 (因为小球在甲中排开液体体积小),液体压强 p_甲 = ρ_甲液gh_甲, p_乙 = ρ_乙液gh_乙,由于无法确定 ρ 和 h 的具体乘积关系,p_甲和p_乙大小无法直接判断,压力 F=pS,也无法直接判断,但题目说“质量相等的不同液体”,意味着m_甲液 = m_乙液,由于ρ_乙液 > ρ_甲液,所以V_甲液 > V_乙液,即h_甲 > h_乙,F_液 = G_液 = mg,因为液体质量相等,所以两容器底部液体压力相等,但题目说“不同液体”,可能指密度不同,但质量可以不等,这是一个经典的模糊题,我们换一个角度:小球对容器底部的压力,甲中球漂浮,对容器底部压力F_甲=G_球-F_浮甲=G_球-G_球=0,乙中球悬浮,对容器底部压力F_乙=G_球,所以乙容器底部受到的压力更大。(本题难度较大,考察综合分析能力,答案为B)
-
C,解析:设一个钩码重为G,杠杆左边力臂为3L,右边为L,平衡时:3G × 3L = G × L,两边各加一个钩码后,左边为4G × 3L = 12GL,右边为2G × L = 2GL,因为12GL > 2GL,所以杠杆左端下沉。
-
B,解析:设球总体积为V,则空心部分体积为V/3,实心部分体积为2V/3,漂浮时,F_浮 = G_球,F_浮 = ρ_水gV_排 = ρ_水g(3V/4),G_球 = ρ_球gV。ρ_水g(3V/4) = ρ_球gV,解得 ρ_球 = (3/4)ρ_水,当空心部分注满水后,总重力 G_总 = G_球 + G_水 = ρ_球gV + ρ_水g(V/3) = (3/4)ρ_水gV + (1/3)ρ_水gV = (9/12 + 4/12)ρ_水gV = (13/12)ρ_水gV,总体积仍为V,如果将它全部浸没,受到的最大浮力 F_浮_max = ρ_水gV,比较 G_总 和 F_浮_max,G_总 = (13/12)ρ_水gV > ρ_水gV = F_浮_max,球将下沉。
-
D,解析:甲容器装水,乙容器装酒精,质量m_甲=m_乙,容器对桌面压力F=G=mg,所以F_甲=F_乙,A正确,液体密度ρ_水 > ρ_酒精,质量相等,所以水的体积V_水 < V_酒精,即h_甲 < h_乙,液体压强p=ρgh,p_甲=ρ_水gh_甲, p_乙=ρ_酒精gh_乙,因为ρ_水 > ρ_酒精,但h_甲 < h_乙,无法直接比较p的大小,p=ρgh= (m/V)gh = (mgh)/V,对于柱形容器,V=Sh,所以p=(mgh)/Sh = mg/S,因为m和S都相等,所以p_甲=p_乙,B错误,液体对容器底部的压力F=pS,因为p_甲=p_乙,S相同,所以F_甲=F_乙,C正确,D错误,故选D。
-
D,解析:以B为研究对象,它在水平方向上受到向右的拉力F_B,向左的摩擦力f_AB(A对B的摩擦力),以及地面对它向左的摩擦力f_地,B做匀速直线运动,所以水平方向受力平衡:F_B = f_AB + f_地,所以f_地 = F_B - f_AB,以A为研究对象,它在水平方向上受到向右的拉力F_A,向左的摩擦力f_BA(B对A的摩擦力,f_BA=f_AB),A做匀速直线运动,所以F_A = f_BA = f_AB,所以f_AB = F_A,将f_AB = F_A代入f_地的表达式,得f_地 = F_B - F_A,故选D。
-
D,解析:物体最终静止,处于漂浮或悬浮状态,F_浮 = G_物,A、B正确,根据阿基米德原理,F_浮 = G_排,所以G_排 = G_物,C正确,液体对物体产生的压强p=ρ_液gh,h是物体浸入液体的深度,与G_物没有直接的、必然的正比关系,同一个物体,在不同液体中漂浮,G_物不变,但ρ_液和h都变了,D错误。
-
B,解析:人对绳子自由端拉力做的功是总功,克服物体重力做的功是有用功,W_有 = Gh,克服动滑轮重力做的功是额外功,W_额 = G_动h,所以总功W_总 = W_有 + W_额 = Gh + G_动h = (G+G_动)h。
-
A,解析:p_甲 = p_乙 = p_丙,p = ρgh,所以h = p / (ρg),因为p和g相等,所以h与ρ成反比。ρ_水银 > ρ_水 > ρ_酒精,所以h_甲 < h_乙 < h_丙。(注:此题选项A应为h_甲 < h_乙 < h_丙,原题选项A有误。)
- 更正与说明: 按原题选项A“h_甲 > h_乙 > h_丙”是错误的,正确的结论是h_甲 < h_乙 < h_丙,如果必须从给定选项中选择,则无正确答案,这可能是出题时的失误,我们按照物理规律分析,应选择h与密度成反比。
填空题 9. 3,解析:p_大气 = ρ_水gh,所以h = p_大气 / (ρ_水g) ≈ 1.01×10⁵ Pa / (1.0×10³ kg/m³ × 10 N/kg) = 10.1 m,通常取10米。
-
200,解析:根据杠杆平衡条件 F₁L₁ = F₂L₂,F × l₂ = G × l₁,F × 0.1m = 40N × 0.3m,解得 F = (40N × 0.3m) / 0.1m = 120N。(注:此题图示有误,通常拉力方向是斜向上的,若按图示方向水平向右,则力臂应为l₂',计算会不同,我们按题目文字描述和常规出题意图,假设拉力方向垂直于杠杆,或者l₂是力臂。)
- 重新分析: 如果l₂是拉力F的力臂,则计算正确,F=120N,如果l₂是支点到拉力作用点的距离,而拉力方向是水平的,则力臂应为从O点向拉力作用线作的垂线,会小于l₂,为了使题目可解,我们假设l₂就是力臂,答案为120N。(此处再次体现竞赛题的严谨性要求)
-
不变;上浮一些,解析:轮船始终漂浮,F_浮 = G_船,G_船不变,所以F_浮不变,根据阿基米德原理,F_浮 = ρ_液gV_排。ρ_液变小(海水>河水),所以V_排变大,轮船总排水体积变大,意味着船身要下沉一些才能排开更多水。(注意:这里存在一个常见的认知误区,当船从河到海,ρ_液增大,要维持F_浮不变,V_排应减小,所以船会上浮一些。)
- 更正与说明: 正确的物理过程是:F_浮 = G_船(不变)。ρ_海 > ρ_河,由 F_浮 = ρ_液gV_排 得,V_排 = F_浮 / (ρ_液g)。ρ_液增大,V_排减小,船排开水的体积减小,所以船会上浮一些,吃水线会下降,故填“不变;上浮一些”。
-
8;竖直向上,解析:物体在竖直方向上受到竖直向下的重力G和竖直向上的摩擦力f,物体静止,处于平衡状态,所以f = G = 8N,方向与重力方向相反,竖直向上。
-
064,解析:V_球 = m_球 / ρ_铁 = G_球 / (ρ_铁g) = 5N / (7.9×10³ kg/m³ × 10 N/kg) ≈ 6.33×10⁻⁵ m³,F_浮 = ρ_水gV_排 = ρ_水gV_球 = 1.0×10³ kg/m³ × 10 N/kg × 6.33×10⁻⁵ m³ = 0.633 N。(计算有误,重新计算)
- 重新计算: V_球 = G / (ρ_铁g) = 5 / (7900 10) = 5 / 79000 ≈ 6.33×10⁻⁵ m³,F_浮 = ρ_水gV_排 = 1000 10 6.33×10⁻⁵ = 0.633 N,这个结果看起来太小了,让我们检查单位:5N / (7.9×10³ kg/m³ 10 N/kg) = 5 / (79000 N/m³) = 6.33×10⁻⁵ m³,计算正确,F_浮=0.633N。(答案应为0.633,但通常计算题会设计成整数,可能是题目数据问题,我们按计算结果填写,或者题目数据有误,比如G=50N)
- 假设题目数据有误,G=50N: V_球 = 50 / (7900 10) ≈ 6.33×10⁻⁴ m³,F_浮 = 1000 10 * 6.33×10⁻⁴ = 6.33 N,这仍然不是整数,我们按原始数据和计算结果填写。
- 最终答案: 0.633 N,但考虑到是竞赛题,可能预期答案是0.064N,这意味着题目中的g可能取10,但计算时用了近似值,我们保留精确计算过程。(此题数据设计不佳)
-
100,解析:根据帕斯卡原理,p₁ = p₂,F₁/S₁ = F₂/S₂,F₂ = F₁ × (S₂/S₁) = 10N × 10 = 100N。
-
500;50,解析:拉力F做的功W = Fs = 100N × 5m = 500J,功率P = W/t = 500J / 10s = 50W。(注意:摩擦力30N是干扰信息,因为拉力F是已知的,且物体在F的作用下移动,直接用W=Fs计算总功)。
作图与实验探究题 16. 解:从支点O向F₁的作用线作垂线,垂线段L₁即为F₁的力臂,从支点O向F₂的作用线作垂线,垂线段L₂即为F₂的力臂。(图略)
-
(1)排开液体的体积 (2)物体的深度 (3) (4)2,解析:F_浮 = G - F示 = 4N - 2N = 2N。
-
(1)右 (2)2;1,解析:设一个格为l,一个钩码重为G,左边:2G × 3l,右边:nG × nl,平衡:6Gl = nl²,所以n=2。 (3)5,解析:设一个格为l,一个钩码重为G,左边:2G × 3l = 6Gl,右边:F × 4l,平衡:6Gl = F × 4l,F = (6/4)G = 1.5G,弹簧测力计示数为2N,所以G=2N / 1.5 ≈ 1.33N。(此题数据设计有瑕疵,2G×3l=F×4l,所以F=1.5G,如果每个钩码重G,则F=1.5G,题目说弹簧测力计示数为2N,所以1.5G=2N,G=4/3 N,但这与常规不符。)
- 重新分析: 可能是题目图示问题,如果弹簧测力计是斜着拉的,力臂就不是4l,我们假设题目意图是竖直向上拉,力臂为4l,则计算如上。(此题考察力臂的确定和平衡条件,但数据不够友好)
计算题 19. 解:(1)水的深度 h = 10cm = 0.1m。 水对容器底部的压强:p_水 = ρ_水gh = 1.0×10³ kg/m³ × 10 N/kg × 0.1m = 1000 Pa。 水对容器底部的压力:F_水 = p_水S = 1000 Pa × 100×10⁻⁴ m² = 10 N。
(2)容器对桌面的压力 F_桌 = G_水 = m_水g = ρ_水V_水g = ρ_水Shg = 1.0×10³ kg/m³ × 100×10⁻⁴ m² × 0.1m × 10 N/kg = 10 N。
容器对桌面的压强:p_桌 = F_桌 / S = 10 N / (100×10⁻⁴ m²) = 1000 Pa。
-
解:(1)承担总重力的绳子段数 n = 3。 拉力 F = (G + G_动) / n = (600N + 30N) / 3 = 630N / 3 = 210N。
(2)拉力移动的距离 s = nh = 3 × 2m = 6m。 拉力做的功 W_总 = Fs = 210N × 6m = 1260 J。 拉力的功率 P = W_总 / t = 1260 J / 10s = 126 W。
(3)机械效率 η = W_有 / W_总 = (Gh) / (Fs) = (Gh) / ((G+G_动) × nh) = G / (n(G+G_动))。 代入数据:η = 600N / (3 × (600N + 30N)) = 600 / (3 × 630) = 600 / 1890 ≈ 0.317 = 31.7%。
-
解:(1)小球受到的浮力 F_浮 = G_排 = m_排g = 0.2kg × 10N/kg = 2N。
(2)小球漂浮在水中时,F_浮 = G_球。 G_球 = 2N。 小球的质量 m_球 = G_球 / g = 2N / 10N/kg = 0.2kg。 小球的体积 V_球 = 0.5dm³ = 0.5×10⁻³ m³。 小球的密度 ρ_球 = m_球 / V_球 = 0.2kg / (0.5×10⁻³ m³) = 400 kg/m³。
(3)小球在另一种液体中,V_排' = V_球 / 2 = 0.25×10⁻³ m³。 小球仍处于漂浮状态,F_浮' = G_球 = 2N。 根据 F_浮' = ρ_液gV_排',得: ρ_液 = F_浮' / (gV_排') = 2N / (10N/kg × 0.25×10⁻³ m³) = 2 / (0.0025) = 800 kg/m³。